Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Environ Res ; 211: 113134, 2022 08.
Article in English | MEDLINE | ID: covidwho-1748017

ABSTRACT

Numerous studies have been conducted worldwide to investigate if an association exists between meteorological factors and the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection incidence. Although research studies provide conflicting results, which can be partially explained by different methods used, some clear trends emerge on the role of weather conditions and SARS-CoV-2 infection, especially for temperature and humidity. This study sheds more light on the relationship between meteorological factors and SARS-CoV-2 infection incidence in 23 Italian and 52 Spanish cities. For the purposes of this study, daily air temperature, absolute and relative humidity, wind speed, ultraviolet radiation, and rainfall are considered exposure variables. We conducted a two-stage meta-regression. In the first stage, we estimated the exposure-response association through time series regression analysis at the municipal level. In the second stage, we pooled the association parameters using a meta-analytic model. The study demonstrates an association between meteorological factors and SARS-CoV-2 infection incidence. Specifically, low levels of ambient temperatures and absolute humidity were associated with an increased relative risk. On the other hand, low and high levels of relative humidity and ultraviolet radiation were associated with a decreased relative risk. Concerning wind speed and rainfall, higher values contributed to the reduction of the risk of infection. Overall, our results contribute to a better understanding of how the meteorological factors influence the spread of the SARS-CoV-2 and should be considered in a wider context of existing robust literature that highlight the importance of measures such as social distancing, improved hygiene, face masks and vaccination campaign.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , China , Cities/epidemiology , Humans , Humidity , Immunization Programs , Incidence , Italy/epidemiology , Meteorological Concepts , SARS-CoV-2 , Spain/epidemiology , Temperature , Time Factors , Ultraviolet Rays
2.
Encyclopedia ; 1(3):519-526, 2021.
Article in English | MDPI | ID: covidwho-1295798

ABSTRACT

Air pollution exposure is one of the greatest risks to health worldwide. It is estimated to be responsible for about 4.2 million deaths around the world every year owing to many serious diseases such as heart disease, stroke, acute and chronic respiratory diseases, and lung cancer. The WHO guideline limits are exceeded in several areas around the world, and it is estimated that about 90% of the world’s population is exposed to high air pollution levels, especially in low- and middle-income countries. The COVID-19 pandemic has forced governments to implement severe mobility restriction measures to limit the spread of the virus. This represented a unique opportunity to study the impact of mobility on urban air quality. Several studies which have investigated the relations between the quality of the air and such containment measures have shown the significant reduction of the main pollutants in the urban environment so to encourage the adoption of new approaches for the improvement of the quality of air in the cities. The aims of this entry are both a brief analysis and a discussion of the results presented in several papers to understand the relationships between COVID-19 containment measures and air quality in urban areas.

3.
Int J Environ Res Public Health ; 18(5)2021 02 26.
Article in English | MEDLINE | ID: covidwho-1115414

ABSTRACT

The set of measures to contain the diffusion of COVID-19 instituted by the European governments gave an unparalleled opportunity to improve our understanding of the transport and industrial sectors' contribution to urban air pollution. The purpose of this study was to assess the impacts of the lockdown measures on air quality and pollutant emissions in Valencia, Spain. For this reason, we determined if there was a significant difference in the concentration levels of different particulate matter (PM) sizes, PM10, PM2.5, and NOx, NO2, NO, and O3, between the period of restrictions in 2020 and the same period in 2019. Our findings indicated that PM pollutant levels during the lockdown period were significantly different from the same period of the previous year, even if there is variability in the different local areas. The highest variations reduction in the PM10 and PM2.5 levels were observed for the València Centre, València Avd Francia, and València Pista de Silla (all of the urban traffic type) in which there was a reduction of 58%-42%, 56%-53%, and 60%-41% respectively. Moreover, consistent with recent studies, we observed a significant reduction in nitric oxide levels in all the air monitoring stations. In all seven monitoring stations, it was observed, in 2020, NOx, NO2, and NO concentrations decreased by 48.5%-49.8%-46.2%, 62.1%-67.4%-45.7%, 37.4%-35.7%-35.3%, 60.7%-67.7%-47.1%, 65.5%-65.8%-63.5%, 60.0%-64.5%-41.3%, and 60.4%-61.6%-52.5%, respectively. Lastly, overall O3 levels decreased during the lockdown period, although this phenomenon was more closely related to weather conditions. Overall, no significant differences were observed between the meteorological conditions in 2019 and 2020. Our findings suggest that further studies on the effect of human activities on air quality are needed and encourage the adoption of a holistic approach to improve urban air quality.


Subject(s)
Air Pollution , COVID-19 , Environmental Monitoring , Air Pollution/analysis , Communicable Disease Control , Humans , Particulate Matter/analysis , Spain
4.
Atmosphere ; 11(10):1118, 2020.
Article in English | MDPI | ID: covidwho-875261

ABSTRACT

Despite the societal and economic impacts of the COVID-19 pandemic, the lockdown measures put in place by the Italian government provided an unprecedented opportunity to increase our knowledge of the effect transportation and industry-related emissions have on the air quality in our cities. This study assessed the effect of reduced emissions during the lockdown period, due to COVID-19, on air quality in three Italian cities, Florence, Pisa, and Lucca. For this study, we compared the concentration of particulate matter PM10, PM2.5, NO2, and O3 measured during the lockdown period, with values obtained in the same period of 2019. Our results show no evidence of a direct relationship between the lockdown measures implemented and PM reduction in urban centers, except in areas with heavy traffic. Consistent with recently published studies, we did, however, observe a significant decrease in NO2 concentrations among all the air-monitoring stations for each city in this study. Finally, O3 levels remained unchanged during the lockdown period. Of note, there were slight variations in the meteorological conditions for the same periods of different years. Our results suggest a need for further studies on the impact of vehicular traffic and industrial activities on PM air pollution, including adopting holistic source-control measures for improved air quality in urban environments.

SELECTION OF CITATIONS
SEARCH DETAIL